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Abstract

A preliminary numerical study of the effect of mixed convection on hydrodynamic removal of contaminants con-

tained in a cavity is carried out. The process of fluid renewal in a cavity is modeled via a numerical solution of the

Navier–Stokes equations coupled with the energy equation for transient flows. Attention in the present work is focused

on the effects of mixed convection on the transient development of a cavity flow and the efficiency of cleaning cavities.

The results show that the change in Grashof number causes a dramatic difference in the observed flow pattern and

cleaning efficiency.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The residues of industrial manufacturing processes

can give rise to an accumulation of deposits in cavities of

rough surfaces and those which may arise through

poorly fitted components and junctions in the pipe

work. The quality and cleanliness of the processed ma-

terial is maintained by periodically cleaning the ducts

and pipelines. In recent years, hydrodynamic cleaning of

components, parts and pipelines has become widely ac-

cepted, since solvents used to clean a system can be

environmentally harmful. However there are many

problems which involve distinct cavities in the pipelines

and the cleaning of these can lead to quite difficult

problems. Due to the presence of recirculating vortices

in cavities of rough surfaces, it is found to be difficult to

remove all traces of residues. Consequently the modeling

of duct flow over a cavity is considered as a starting

point for assessing the effect of a flow in removing ma-

terial initially contained in a cavity.

Numerous studies of duct flow over cavities have

been reported in the past few decades. The previous

results [1–3] showed that the separation streamline and

the intensity of the closed streamline flow within the

cavity are a function of cavity aspect ratio, relative duct

size to cavity size, and the parallel velocity within the

duct. These important recirculation regions may be ob-

served in the problem of cavity cleaning. In addition,

studies of mass transfer in a cavity have appeared in the

pertinent literature [4–8]. However, most previous

studies have assumed that the velocity components in

the cavity are those which exist in steady state condi-

tions. Recently, Fang et al. [9] have presented a nu-

merical and experimental study of the time-dependent

hydrodynamic removal of a contaminated fluid from a

cavity on the floor of a duct. It was shown that the

cleaning of the foulant with the same density as the fluid

in the duct is more pronounced during the unsteady

start-up of the duct flow and the rate of cleaning de-

creases as the flow reaches a steady state. The cleaning

process is enhanced as the cavity aspect ratio (width/

depth) is increased and as the duct Reynolds number

increases.

The applications of convective heat transfer problems

are numerous in the chemical and food processing in-

dustry. Relatively few studies, however, deal with the

problem of hydrodynamic removal under the effect of

convective heat transfer. Hence, the extension to such

problem is important in hydrodynamic cleaning. In re-

cent years, the study of convective heat transfer in a
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cavity has increased. The previous studies [10–14]

showed that the increase in the heat transfer rate is more

rapid and the cavity flow patterns dramatically change,

especially when natural convection is the dominant

mode of heat transfer. For a cavity containing a con-

taminated fluid, the interaction between the external

flow and the buoyancy driven flow generated by the heat

source leads to the possibility of complex flows. From a

mass transfer perspective, the renewal rate of a cavity

fluid may be enhanced due to the buoyancy driven flow.

Consequently it is of particular interest to know the ef-

fect of mixed convection in the hydrodynamic cleaning

of a cavity.

The main purpose of the present study is to investi-

gate the effect of mixed convection on hydrodynamic

removal of contaminants from a cavity. Although for

the higher renewal rate of the cavities the duct flow may

be characterized by a turbulent regime, the present study

is limited to the laminar regime as a first step. This work

still covers a wide range of Grashof numbers, Reynolds

numbers and cavity aspect ratios with respect to the

cleaning rate in laminar regime. The process of fluid

renewal in a cavity is modeled via a numerical solution

of the Navier–Stokes equations coupled with the energy

equation for transient flows. The numerical method used

is based on the MAC (Marker and Cell) method of

Harlow and Welch [15]. Passive markers are used to

visualize the flow and to quantify the hydrodynamic

cleaning of the cavities.

2. Physical model and numerical method

The geometry of the duct-cavity configuration em-

ployed in this study is shown in Fig. 1. A Cartesian

coordinate system is used with origin at the lower left

hand corner of the computational domain. The cavity

dimensions are defined by width W and depth D. Fluid
of density q and viscosity l flows continuously into the

duct from the left and exits on the right. The accelera-

tion, due to gravity g, acts in the negative z-direction.
The properties of the contaminated cavity fluid are as-

Nomenclature

AR cavity aspect ratio (Width/Depth)

D cavity depth

Dnþ1
i;k indication of finite difference form of the

continuity equation

Gr Grashof number ¼ gbDTH 3=m2ð Þ
g gravitational acceleration

H duct height

Pr Prandtl number (¼ m=a)
p pressure

qs heat source

Re Reynolds number ð¼ UHq=lÞ
Rf relaxation parameter

T temperature

Ti inflow temperature

t time variable

U maximum velocity of duct flow

u velocity in the horizontal direction

W cavity width

w velocity in the vertical direction

x horizontal coordinate

z vertical coordinate

Greek symbols

a thermal diffusivity

b coefficient of thermal expansion

DT temperature scale (¼ qsH=k)
dt a time step

dx length of a cell in x direction

dz length of a cell in z direction
eD convergence tolerance

g indication of finite differencing form of

Navier–Stokes equation

h dimensionless temperature [¼ðT � TiÞ=DT ]
k a combination factor

l viscosity

m kinematic viscosity

q density

Subscripts

i x direction index

k z direction index

Superscripts

m an iteration count

n time level

Fig. 1. A sketch of the co-ordinate system in a duct with a

rectangular cavity.
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sumed to be the same as for the fluid flowing in the duct.

There is a constant-flux heat source qs on the bottom

wall of the cavity. All solid boundaries are assumed to

be rigid no-slip walls. The height of the duct H was kept

constant. Preliminary numerical experiments in the

present study have indicated that entry lengths of twice

the duct heights (2H ) or greater cause negligible changes

in the results. Entry lengths of 2H have been used for all

the solutions presented in this study.

To non-dimensionalize the governing equations and

the boundary conditions, the duct height H is chosen as

the characteristic length, the maximum velocity of duct

flow U as the characteristic velocity, the quantity qU 2 as

the characteristic pressure, and qsH=k as the character-

istic temperature. The fundamental non-dimensional

equations in Cartesian form for two-dimensional in-

compressible flow of a Newtonian fluid with constant

properties are:

ou
ox

þ ow
oz

¼ 0 ð1Þ

ou
ot

þ ou2

ox
þ ouw

oz
¼ � op

ox
þ 1

Re
o2u
ox2

�
þ o2u

oz2

�
ð2Þ

ow
ot

þ owu
ox

þ ow2

oz
¼ � op

oz
þ 1

Re
o2w
ox2

�
þ o2w

oz2

�
þ Gr
Re2

h

ð3Þ

oh
ot

þ ouh
ox

þ owh
oz

¼ 1

Re � Pr
o2h
ox2

�
þ o2h

oz2

�
ð4Þ

Where Re ¼ UHq=l is the Reynolds number, Gr ¼
gbDTH 3=m2 is Grashof number and Pr ¼ m=a is Prandtl

number.

The flow field is discretized into cells of size dx� dz
with cell centres being designated by indices i in the x
direction and k in the z direction. The u values are lo-

cated on the vertical sides of the cell, and w values on the

horizontal upper and lower sides. The values of p and h
are located at the cell centres. The Navier–Stokes

equations and energy equation are represented in a

finite-difference form by forward differencing in time and

centred differencing in space, except for the convection

terms in the Navier–Stokes equations, where a combi-

nation of centred and upstream differencing is used. For

example, if integer �n� represents the time level, then u at

a new (nþ 1) time level is calculated from

ðquÞnþ1

iþ1=2;k ¼ giþ1=2;k �
dt
dx
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�
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where
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The convection terms in (5) are given by
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where k is a combination factor; k ¼ 0 gives centred

differencing and k ¼ 1 gives upstream differencing. Ap-

proximate stability conditions for the iteration proce-

dure are given by Miyata and Nishimura [16]:

dt
dx

u
�

þ dt
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w
�
6 k6 1 ð6Þ
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m6
1� k dt
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dz w

� �
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Eq. (6) gives conditions for the combination factor

and the Courant number, and it limits the distance a

fluid particle can travel in one time step to the smallest

side of a cell. Eq. (7) represents an upper limit on vis-

cosity and it is important when highly viscous flows are

being considered. A value of 0.5 is normally used to

avoid instabilities arising from numerically introduced

negative diffusion.

The solution is approached through the artificial

compressibility method of Chorin [17] which involves a

simultaneous iteration on pressure and velocity com-

ponent. If Dnþ1
i;k represents the divergence of the fluid in a

cell, where

Dnþ1
i;k ¼ 1

dx
unþ1
iþ1=2;k

�
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�
þ 1
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then the pressure in cell i, k is updated through

pnþ1
i;k

� �mþ1

¼ pnþ1
i;k

� �m
� Rf Dnþ1

i;k

� �m

where m indicates the mth iteration and Rf is a relaxation

parameter. The solution is reached when the magnitude

of Dnþ1
i;k in each cell is less than some pre-set small value,

typically O(10�6). The stability restriction is given by

Rf 6qdx2=2dt [18]. The optimum value of Rf giving the

most rapid convergence can, in general, only be deter-

mined by experimentation. Rf ¼ 1:85 is used in the

present calculation.

In the original MAC method, the energy equation is

solved by a time marching explicit method. Kuo et al.

L.-C. Fang / International Journal of Heat and Mass Transfer 46 (2003) 2039–2049 2041



[19] have reported that an explicit method may lead to

non-physical results in the transient solution. Thus an

implicit method is used to solve the energy equation in

the present study. Therefore there are two iterative

processes in each time step used to evaluate the pressure

and velocity as well as temperature.

The computational mesh is surrounded by a one-cell-

thick layer of cells, which are used for setting boundary

conditions. No-slip boundary conditions are applied at

all solid boundaries, a flow velocity is prescribed at the

inflow boundary and zero normal gradients are used to

set variables just outside the outflow boundary. The

boundary conditions for the temperature is h ¼ 0 at the

inflow boundary. The insulated conditions are imposed

at the wall and at outflow as well, while oh=oz ¼ �1 is

specified at the bottom of the cavity.

Flow visualization and fluid contamination calcula-

tions are made possible by the use of passive markers.

These are initially distributed before start-up and are

moved to new positions at each time step. The motion of

each marker was recorded as the duct flow interacted

with that in the cavity. The use of marker particles

achieves the same effect as adding a diffusion equation in

Fig. 2. Comparison of the results obtained using the present

code with those of Papanicolaou and Jaluria [14] for Re ¼ 100

and Gr ¼ 10000. (ds horizontal distance from the left vertical

wall of the enclosure, W width of the enclosure).

Fig. 3. Streamlines of duct flow over cavities with varied Grashof numbers, AR ¼ 4 and Re ¼ 50 at steady state.
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which the diffusivity is taken as zero, and therefore the

movement of the markers is entirely due to convection.

For example the new x-position of a marker k at time

level nþ 1 is calculated from xnþ1
k ¼ xnk þ unþ1

k dt where uk
is the horizontal velocity at the marker position, xnk . The
velocity components at the marker positions are calcu-

lated by a weighted interpolation of velocities in sur-

rounding cells as described by Welch et al. [20].

The computer code has been validated by application

to the problem for which solutions are available. The

test was with mixed convection from an isolated heat

source in a rectangular enclosure when Re ¼ 100 and

Gr ¼ 10000 as considered by Papanicolaou and Jaluria

[14]. The good agreement shown in Fig. 2 was obtained

by comparing maximum source temperature hmax for

various source locations from the present method with

those from Papanicolaou and Jaluria [14].

3. Results and discussion

The present investigation covers a range of Grashof

numbers, Gr ¼ 1� 4000, cavity aspect ratios (Width/

Depth), AR ¼ 0:25� 4, and Reynolds numbers, Re ¼
50� 1600. A Prandtl number of water was assumed,

Pr ¼ 7. The flow is always considered to be laminar and

the foulant has the same density as the fluid in the duct.

In addition, the duct velocity profile is considered to be

Poiseuille flow.

Fig. 3 shows the streamlines for Gr ¼ 1� 4000 while

keeping Re ¼ 50 and AR ¼ 4:0. For Gr ¼ 1, the flow

penetration to the bottom of the cavity remains even-

tually one large main vortex in the upstream corner of

the cavity, similar to the results without the effect of

mixed convection by Fang et al. [9]. As the Grashof

number is increased, different flow patterns are en-

countered due to stronger buoyancy effect. It can be seen

that the area of the main vortex in the cavity is increased

with the increase of Gr. For Gr larger than 3000, the

main vortex occupied a large portion of the cavity. It is

worth mentioning that for the values of Gr higher than
4000 the steady state result could not be obtained, since

oscillatory behavior was observed. At such large value,

small disturbances in the flow can give rise to a transi-

tion to turbulent flow. Thus, Gr ¼ 4000 is selected as the

maximum Grashof number in the present study. The

Fig. 4. Isotherms of duct flow over cavities with varied Grashof numbers, AR ¼ 4, and Re ¼ 50 at steady state.
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corresponding isotherms varied with Grashof number

are shown in Fig. 4. For low Grashof number Gr ¼ 1,

the isotherm shows that a large area of the cavity re-

mains at low temperature. For large values of Gr, most

of the area of the cavity remains at the high temperature

due to stronger buoyancy. Clearly, the greater Grashof

number causes stronger recirculation and enhances heat

transfer in the cavity as well.

Streamlines and isotherms, for two cavities of aspect

ratios AR ¼ 1 and 0.25, with Gr ¼ 1000 and 4000 re-

spectively, are shown in Figs. 5 and 6. For AR ¼ 1 and

Gr ¼ 1000, the main vortex fills the cavity. As

Gr ¼ 4000, different flow pattern in the cavity appears.

There is a pair of counter-rotating vortices in the cavity

shown in Fig. 5(a). It can be seen from Fig. 5(b) that the

heat transfer in the cavity is enhanced with the increase

of Gr. For a deeper cavity with AR ¼ 0:25, Fig. 6(a)
shows three sub-regions formed finally and one small

isolated vortex in the corner as Gr ¼ 1000. This is

analogous to the situation documented for the deep

cavities. It is observed that the strength of circulation is

stronger for Gr ¼ 4000 and the small corner vortex

grows. In addition, the stronger buoyancy enhances the

heat transfer in the cavity as illustrated in Fig. 6(b).

Fig. 5. (a) Streamlines and (b) isotherms of duct flow over cavities with varied Grashof numbers, AR ¼ 1 and Re ¼ 50 at steady state.
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By measuring the area covered by the recirculating

fluid in the cavity it is possible to estimate the fraction of

a cavity area that will contain contaminated fluid soon

after a steady state is reached; hence it is interesting to

see how the fraction of recirculating fluid changes with

Grashof number. Fig. 7 shows the fraction of the cavity

area containing contaminated fluid when the flow

reaches its steady state, regardless of contaminant con-

centration. The parameter Aw=Ac is roughly a measure

of the fraction of fluid recirculation in the cavity, where

Aw represents the area of the recirculating flow (see insert

in Fig. 7) and Ac presents the area of the cavity. It is

observed that the fraction of the cavity area increases

with the increase of Gr. With these conditions any

contaminant left in the cavity following the start-up of

the flow will only be further removed by the mixed

convection.

Fig. 6. (a) Streamlines and (b) isotherms of duct flow over cavities with varied Grashof numbers, AR ¼ 0:25 and Re ¼ 50 at steady

state.

Fig. 7. Fraction of fluid trapped in cavities vs. cavity aspect

ratio for varied Grashof numbers and Re ¼ 50.
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The previous work, Fang et al. [9] have shown that

streamline patterns do not indicate how much of the

contaminant is removed. To assess how fluid is purged

from the cavity a number of fluid particles are intro-

duced in the cavity, prior to initiating the flow. Initially

1600 markers are located in the cavity and Fig. 8(a)–(d)

show the distribution of markers remaining in the cavity

of AR ¼ 4:0 with various Grashof numbers at steady

state. It can be seen that more markers were removed

from the cavity at large values of Gr and the distribu-

tions of markers in the cavities match the general dis-

tribution expected by observing the streamline patterns

shown in Fig. 3. The percentage of markers removed as

time progresses for various values of Gr as AR ¼ 4 and

Re ¼ 50 is given in Fig. 9. The rate of removal of

markers is high during the initial stages but becomes

insignificant as time increases. For longer times the

mixed convection dominates the removal process. Fig.

10 shows the percentage of markers (based on the total

number of markers in the cavity before flow start-up)

removed from cavities for different values of Gr against
AR. It can be seen that the percentage of markers re-

moved from cavities increases with the increase of Gr.
Within the scope of the present calculations a maximum

of about 95% can be removed as AR ¼ 4 and Gr ¼ 4000.

The streamlines for the solutions at various values of

Re while keeping Gr fixed at Gr ¼ 4000 shown in Fig. 11.

It is seen that the large central vortex has been stretched

to fill the cavity as Re ¼ 100. The outer flow penetrates a

slight depth at the downstream end of the cavity. For the

value of Re larger than 400, the central vortex shifts to

the far right side of the cavity. For lower Reynolds

number Re6 100, the isotherm in Fig. 12 shows that a

large area of the cavity remains at higher temperature.
Fig. 8. Flow evolution of duct flow in a cavity of AR ¼ 4 by

using markers, for various Grashof numbers at Re ¼ 50.

Fig. 9. Percentage of markers removed from the cavity vs. non-

dimensional time for various Grashof numbers, at Re ¼ 50 and

AR ¼ 4:0.

Fig. 10. Percentage of markers removed from the cavity for

varied Grashof numbers at Re ¼ 50.
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Fig. 11. Streamlines of duct flow over cavities with varied Reynolds numbers, Gr ¼ 4000 and AR ¼ 4 at steady state.

Fig. 12. Isotherms of duct flow over cavities with varied Reynolds numbers, Gr ¼ 4000 and AR ¼ 4 at steady state.
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The area of low temperature increases with the increase

of Reynolds number. It is reasonable that the buoyancy

effect becomes insignificant while the region affected by

the heat source becomes smaller due to the strong ex-

ternal flow. It is interesting to note that the removal of

markers increases as Reynolds number decreases, shown

in Fig. 13. These results are different from those without

mixed convection in Fang et al. [9]. The main reason is

that the strong buoyancy enhances the renewal process

in the cavity at low Reynolds number. In addition, the

effect of duct height H on cavity fluid removal as a

function of cavity depth D is investigated in the present

study. This means that the duct height is small compared

to the cavity depth as the value of H=D decreases. Fig.

14 shows that the percentage of markers removed from a

cavity increases with the increasing H=D.

4. Conclusions

Laminar flow solutions for duct flow over a rectan-

gular cavity have illustrated the effect of mixed convec-

tion on the transient removal of contaminants contained

in a cavity. The rate at which the contaminated cavity

fluid is removed is relatively high during the unsteady

start-up of the duct flow and approaches zero after the

flow reaches a steady state. The results show that the

change in Grashof number causes a dramatic difference

in the observed flow patterns and cleaning efficiency. It

can be seen that the cleaning process is enhanced as

Grashof number is increased due to the interaction be-

tween the external duct flow and buoyancy-induced flow

arising from a thermal source. It is interesting to note

that for the values of Gr higher than 4000 the steady

state result could not be obtained since oscillatory be-

havior was observed.
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